Table 2. The crystal and molecular parameters of the two refined poly-L-proline II models

The angles in italics were not refined.

	Non-statistical	Statistical
τ_{23}	$-23 \cdot 8^{\circ}$	$-23 \cdot 8^{\circ}$
τ_{34}	$31 \cdot 4$	$31 \cdot 4$
τ_{45}	$94 \cdot 7$	$94 \cdot 7$
τ_{56}	$95 \cdot 1$	$96 \cdot 5$
τ_{67}	$180 \cdot 4$	$176 \cdot 5$
τ_{78}	$200 \cdot 2$	$201 \cdot 8$
θ_{x}	$1 \cdot 0$	-1.8
θ_{y}	$232 \cdot 4$	$231 \cdot 2$
θ_{2}	$55 \cdot 2$	$54 \cdot 5$
D	$1 \cdot 244 \AA$	$1 \cdot 243 \AA$
ψ	$42 \cdot 4^{\circ}$	10.7°
ROT $^{\circ}$	-	-65°
TRANS	-	$-6 \cdot 923 \AA$
K	$2 \cdot 400$	$2 \cdot 413$
B	$5 \cdot 10 \AA^{2}$	$0.832 \AA^{2}$

The refined crystal structure we prefer is very similar to that of Burge et al. (1962), and has standard (J. Mol. Biol. (1966), 15, 399) polypeptide chain parameters $\varphi=99.8^{\circ}$, $\psi=-95 \cdot 1^{\circ}, \omega=-0 \cdot 4^{\circ}$.

We thank Professor Sir J.T.Randall for our excellent facilities, Professor M.H.F.Wilkins for his interest, and the Medical Research Council for a scholarship for S.D.D.

Table 3. The cylindrical polar coordinates of the basic (up) poly-L-proline chain unit

Non-statistical

$\alpha \mathrm{C}(3)$
$\mathrm{C}(1)$
$\mathrm{N}(1)$
$\mathrm{O}(1)$
$\alpha \mathrm{C}(1)$
$\beta \mathrm{C}(1)$
$\gamma \mathrm{C}(1)$
$\delta \mathrm{C}(1)$

R	φ	Z
(\AA)	$\left({ }^{\circ}\right)$	(\AA)
1.24	0	0
0.27	12.0	1.16
1.04	-75.3	1.95
$1 \cdot 14$	114.6	1.34
1.24	-120.0	3.10
2.64	-1059	3.40
3.19	-79.2	2.86
2.45	-67.3	1.66

References

Arnott, S., Dover, S. D. \& Elliott, A. (1967). J. Mol. Biol. 30, 201.
Arnott, S. \& Wonacott, A. J. (1966a). Polymer J. 6, 478.
Arnott, S. \& Wonacott, A. J. (1966b). J. Mol. Biol. 21, 371.

Burge, R. E., Harrison, P. M. \& McGavin, S. (1962). Acta Cryst. 15, 914.
Cowan, P. M. \& McGavin, S. (1955). Nature, Lond. 176, 501.

Elliott, A. \& Malcolm, B. R. (1959). Proc. Roy. Soc. A 249, 30.
Leung, Y. C. \& Marsh, R. E. (1958). Acta Cryst. 11, 17.
Sasisekharan, V. (1959). Acta Cryst. 12, 897.

Acta Cryst. (1968). B24, 601
The crystal structure of $\mathbf{Z r}_{2} \mathbf{S e}^{*}$ By H.F.Franzen and L.J. Norrby \dagger, Institute for Atomic Research and Department of Chemistry Iowa State University, Ames, Iowa, U.S.A.

(Received 6 December 1967)

The crystal structure of $\mathrm{Zr}_{2} \mathrm{Se}$ has been determined and refined by X-ray single-crystal methods. $\mathrm{Zr}_{2} \mathrm{Se}$ was found to be isostructural with $\mathrm{Ta}_{2} \mathrm{P}$ [Nylund, Acta Chem. Scand. (1966), 20, 2393] and with $\mathrm{Ti}_{2} \mathrm{~S}$ [Owens, Conard \& Franzen, Acta Cryst. (1967), 23, 77].

The coordination polyhedra types between trigonal prismatic and tetrakaidecahedral found for boron, silicon and phosphorus in many compounds of these elements with transition elements (Aronsson, Lundström \& Rundqvist, 1965) were recently found also for sulphur in $\mathrm{Ti}_{2} \mathrm{~S}$ (Owens, Conard \& Franzen, 1967) and in $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ (Franzen, Beineke \& Conard, 1968). The work reported here was carried out with the purpose of further exploring the crystal chemistry of the lower chalcogenides of transition elements, and in particular to determine whether other cases of augmented trigonal prismatic coordination could be found for chalcogens.

The method of high temperature preparation has been described previously (Owens, Conard \& Franzen, 1967). In the case of $\mathrm{Zr}_{2} \mathrm{Se}$ the sample was prepared at a final annealing temperature of $1550^{\circ} \mathrm{C}$. The single-crystal X-ray diffraction data were collected with a Hilger-Watts full circle diffractometer coupled to an SDS-910 computer in

* Work was performed in the Ames Laboratory of the U.S. Atomic Energy Commission. Contribution No. 2227.
\dagger Present address: Institute of Inorganic and Physical Chemistry, University of Stockholm, Stockholm 50, Sweden.
a configuration described elsewhere (Dahm, Benson, Nimrod, Fitzwater \& Jacobsen, 1967). Mo $K \alpha$ radiation was used with balanced Zr and Y filters to collect data for about 1300 reflections at $2 \theta \leq 80^{\circ}$.
The Lorentz, polarization and absorption corrections were applied as described previously (Franzen, Beineke \& Conard, 1968). The standard deviations of all observations were obtained with the use of the law of propagation of errors and estimated standard deviations in the θ angle and the absorption factor and standard deviations in the intensities (corrected for background) based on counter statistics. Data were accepted only if $\sigma(I) / I<0 \cdot 4$, leaving 438 independent reflections.

The lattice parameters were determined from a Guinier powder photograph at $25^{\circ} \mathrm{C}$ using KCl as internal standard and $\mathrm{Cu} K \alpha_{1}$ radiation, $\lambda=1.54050 \AA$:

$$
\begin{gathered}
a=12 \cdot 6400 \pm 27 \AA, b=15 \cdot 7968 \pm 32 \AA, c=3 \cdot 6016 \pm 10 \AA \\
V=719 \cdot 1 \pm 3 \AA^{3} . \\
\text { With } Z=12,(c f . \text { below }), D_{x}=7 \cdot 24 \mathrm{~g} \cdot \mathrm{~cm}^{-3} .
\end{gathered}
$$

By comparison of the Weissenberg pattern of $\mathrm{Zr}_{2} \mathrm{Se}$ with that of $\mathrm{Ti}_{2} \mathrm{~S}$ it seemed likely that these two compounds are isostructural. Accordingly the $\mathrm{Ti}_{2} \mathrm{~S}$ positions were used as
a starting model for the structure of $\mathrm{Zr}_{2} \mathrm{Se}$, and this model was refined by full-matrix least-squares calculation with the computer program ORFLS (Busing, Martin \& Levy, 1962). The atomic scattering factors used were those given by Hanson, Herman, Lea \& Skillman (1964). The real part of the anomalous dispersion correction as given in International Tables for X-ray Crystallography (1962) was applied to the scattering factor for zirconium. In $\mathrm{Ti}_{2} \mathrm{~S}$ there are twelve formula units in nine fourfold positions in the mirror planes of the space group Pnnm (No.58). In addition to the eighteen corresponding positional parameters, nine independent isotropic temperature factor coefficients and one scale factor were refined. The overdetermination of the structure was thus greater than fifteen-fold.

Table 1. Least-squares refined parameters of the crystal structure of $\mathrm{Zr}_{2} \mathrm{Se}$
All atoms are in the point position $4(g) x, y, 0$ of the space group Pnnm.

	$104 X / a$	$10^{4} Y / b$	B
	1042		
$\mathbf{Z r}(1)$	1522 ± 5	242 ± 4	$0 \cdot 52 \pm 12 \AA^{2}$
$\mathrm{Zr}(2)$	775 ± 5	2534 ± 5	$0 \cdot 64 \pm 11$
$\mathrm{Zr}(3)$	5829 ± 5	801 ± 4	$0 \cdot 20 \pm 10$
$\mathrm{Zr}(4)$	4681 ± 5	3912 ± 4	$0 \cdot 35 \pm 11$
$\mathrm{Zr}(5)$	7988 ± 5	2028 ± 4	$0 \cdot 18 \pm 12$
$\mathrm{Zr}(6)$	8767 ± 5	4221 ± 4	$0 \cdot 23 \pm 11$
$\mathrm{Se}(1)$	4206 ± 5	2083 ± 4	$0 \cdot 22 \pm 11$
$\mathrm{Se}(2)$	2447 ± 5	4191 ± 4	$0 \cdot 38 \pm 12$
$\mathrm{Se}(3)$	6806 ± 5	3476 ± 4	$0 \cdot 13 \pm 11$

The weights, w, were taken to be reciprocals of the squares of the standard deviations, obtained as discussed above. The quantity minimized in the least-squares procedure was $\Sigma w\left(\left|F_{\text {obs }}\right|-\left|F_{\text {calc }}\right|\right)^{2}$. An unweighted R value of 0.106 was obtained after several cycles, and further cycles of calculation did not result in further refinement of the structure; all parameter shifts were $<1 \%$ of the e.s.d.'s of the parameters. The value obtained for the quantity commonly

Table 2. Interatomic distances in $\mathrm{Zr}_{2} \mathrm{Se}(\pm 0.01 \AA)$

Reference atom	Coordinated atom	Number of coordinated atoms	Distance
$\mathrm{Se}(1)$	$\mathrm{Zr}(2)$	2	2.75 £
	Zr (5)	2	2.75
	Zr (6)	2	2.79
	Zr (3)	1	2.88
	Zr(4)	1	2.95
Se(2)	Zr (5)	2	2.72
	Zr (3)	2	2.73
	$\mathrm{Zr}(1)$	2	2.77
	$\mathbf{Z r}(4)$	1	$2 \cdot 86$
	$\mathrm{Zr}(6)$	1	2.94
Se(3)	Zr(5)	1	2.73
	Zr (6)	1	2.74
	$\mathrm{Zr}(1)$	2	2.74
	$\mathrm{Zr}(2)$	2	2.74
	$\mathbf{Z r}(4)$	1	$2 \cdot 78$

Table 3. Observed and calculated structure factors for Zr Se

referred to as the standard deviation of an observation of unit weight, $\left[\Sigma w \Delta^{2} / m-n\right]^{ \pm}$(m is the number of observations, n is the number of variables), was $1 \cdot 25$. The parameters obtained are presented in Table 1. The $\mathrm{Se}-\mathrm{Zr}$ interatomic distances implied by these parameters are presented in Table 2. The data of Table 1 demonstrate that $\mathrm{Zr}_{2} \mathrm{Se}$ is isostructural with $\mathrm{Ta}_{2} \mathrm{P}$ (Nylund, 1966) and with $\mathrm{Ti}_{2} \mathrm{~S}$. The setting used by Nylund differs from that used here by an interchange of the a and b axes. The fact that $\mathrm{Ta}_{2} \mathrm{P}, \mathrm{Ti}_{2} \mathrm{~S}$ and $\mathrm{Zr}_{2} \mathrm{Se}$ are isostructural is not an unexpected result considering their similar radius ratios and valence electron configurations. It has further been shown by the data of Table 2 that selenium, as well as sulphur, exhibits coordination as high as seven and eight fold with augmented trigonal prismatic arrangement of the metal atoms. A list of $F_{\text {obs }}$ and $F_{\text {calc }}$ is given in Table 3.

A view of the bonding of chalcogens in trigonal prismatic (Franzen, 1966), and augmented trigonal prismatic (Owens, Conard \& Franzen, 1967; Franzen, Beineke \& Conard, 1968) environments has been presented which attributes the occurrence of these coordination configurations to the involvement of the chalcogen d orbitals in the chemical bonding. It would seem that this view of the bonding is unavoidable in the case of $\mathrm{Zr}_{2} \mathrm{Se}$, since the $4 d$ levels of both Zr and Se are of nearly the same energy, and thus they surely will mix in the formation of a valence band in $\mathrm{Zr}_{2} \mathrm{Se}$. The metal coordination in compounds of this structure
type has recently been discussed (Franzen, Smeggil \& Conard, 1967).

The authors wish to express their gratitude to $\mathrm{Mr} \mathbf{J}$. Smeggil for his assistance in the preparation of single crystals and powder samples of $\mathrm{Zr}_{2} \mathrm{Se}$ and the preliminary X-ray work.

References

Aronsson, B., Lundström, T. \& Rundqvist, S. (1965). Borides, Silicides \& Phosphides, New York: John Wiley.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). Oak Ridge National Laboratory Report ORNL-TM-305.
Dahm, D. J., Benson, J. E., Nimrod, D. M., Fitzwater, D. R. \& Jacobsen, R. A. (1967). USAEC Rept. IS-1701.

Franzen, H. F. (1966). J. Inorg. Nucl. Chem. 28, 1575.
Franzen, H. F., Beineke, T. A. \& Conard, B. R. (1968). Acta Cryst. B24, 412.
Franzen, H. F., Smeggil, J. \& Conard, B. R. (1967). Mat. Res. Bul. In the press.
Nylund, A. (1966). Acta Chem. Scand. 20, 9.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040.

International Tables for X-ray Crystallography (1962). Vol. III, p.216. Birmingham: Kynoch Press.
Owens, J. P., Conard, B. R. \& Franzen, H. F. (1967). Acta Cryst. 23, 77.

Acta Cryst. (1968). B24, 603
The cell constants and space group of the complex $\left(\mathrm{C}_{6} \mathbf{H}_{5}\right)_{3} \mathbf{S n} . \mathrm{Mn}(\mathrm{CO})_{5}$ By Kh. A.I. F. M. Mannan, Physics Department, Dacca University, Dacca-2, East Pakistan.
(Received 6 November 1967)
The cell constants for the complex $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sn} . \mathrm{Mn}(\mathrm{CO})_{5}$ are $a=15 \cdot 91 \pm 0 \cdot 01, b=16 \cdot 32 \pm 0 \cdot 01, c=32 \cdot 12 \pm$ $0.02 \AA ; \beta=95 \cdot 0 \pm 0 \cdot 1^{\circ}$. There are two molecules in each asymmetric unit. The crystal belongs to the space group $C 2 / c$.

The complex $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sn}$. $\mathrm{Mn}(\mathrm{CO})_{5}$ would be expected to have a direct metal to metal bonding as the crystals are diamagnetic. As a part of a study of metal to metal bonds between such dissimilar metal atoms, the crystal structure determination of this complex by X-ray diffraction methods was undertaken.

The crystals are monoclinic. The cell constants determined from zero-layer Weissenberg photographs about a and b axes with $\mathrm{Cu} K \alpha$ radiation are:

$$
\begin{gathered}
a=15 \cdot 91 \pm 0 \cdot 01, b=16 \cdot 32 \pm 0 \cdot 01, c=32 \cdot 12 \pm 0 \cdot 02 \AA ; \\
\beta=95 \cdot 0 \pm 0 \cdot 1^{\circ} .
\end{gathered}
$$

The density observed by the method of flotation was $1.74 \mathrm{~g} . \mathrm{cm}^{-3}$, and the calculated density for 16 molecules in the unit cell was $1.74 \mathrm{~g}_{\mathrm{cm}} \mathrm{cm}^{-3}$.

The systematic absences observed from Weissenberg photographs for the 0 to 4 th layers about the a axis, the 0 to 9 th layers about the b axis, and the 0 and 1st layers about the c axis may be summarized as below:
Reflexions $h k l$ are present for $h+k=2 n$.
Reflexions $h 0 l$ are present for $l=2 n$, and $h=2 n$.
Reflexions $0 k 0$ are present for $k=2 n$.

Thus, from all these conditions of systematic absences, the space group is either no.9, Cc or no.15, C2/c (International Tables for X-ray Crystallography, 1952).

A three-dimensional Patterson synthesis revealed linear concentrations at $0, y, \frac{1}{2}$ and planar concentrations at $x, 0, z$. This shows that the space group is $C 2 / c$ (Buerger, 1959). This creates the problem of placing two molecules in each asymmetric unit.

My thanks are due to Prof. H.M. Powell, F.R.S. and Prof. R.S. Nyholm, F.R.S. for kindly supplying the crystals. I acknowledge my gratitude to all those who helped me in various ways for the progress of this work.

References

Buerger, M. J. (1959). Vector Space, p.202. New York: John Wiley.
International Tables for X-ray Crystallography (1952). Vol. 1. Birmingham: Kynoch Press.

