The	angles in i	talics	were	not refin	ed.
	Non	statis	tical	Statist	ical
τ_{23}	_	23.8		- 23.8	8°
τ34		31•4		31.4	4
τ_{45}		94.7		94•2	7
τ_{56}		95.1		96.	5
τ_{67}		80∙4		176.	5
τ78	2	200.2		201.8	3
θ_x		1.0		1.8	3
θ_{u}	2	232.4		231.2	2
θ_z		55-2		54.	5
Ď		1.24	4 Å	1.2	243 Å
W		42.4°		10.3	7°
ŔC	т	-		-65°	
TR	ANS			- 6.9	923 Å
ĸ		2·4 0	0	2.4	413
B		5.10	Å2	0.8	332 Å2

The refined crystal structure we prefer is very similar to that of Burge et al. (1962), and has standard (J. Mol. Biol. (1966), 15, 399) polypeptide chain parameters $\varphi = 99.8^{\circ}$, $\psi = -95.1^{\circ}, \omega = -0.4^{\circ}.$

We thank Professor Sir J.T.Randall for our excellent facilities, Professor M.H.F.Wilkins for his interest, and the Medical Research Council for a scholarship for S.D.D.

Table 3. The cylindrical polar coordinates of the basic (up) poly-L-proline chain unit

	Non-statist	ical		Statistical			
	R Ø	Z	R	φ	Z		
	(Å) (°)	(Å)	(Å)	(°)	(Å)		
αC(3)	1.24 0	0	1.24	0	0		
C(1)	0.27 12.0	1.16	0.32	14.7	1.20		
N(1)	1.04 - 75.3	1.95	1.03	- 73.9	1.97		
O(1)	1.14 114.6	1.34	1.15	109-2	1.41		
αC(1)	1.24 - 120.0	3.10	1.24	-120.0	3.10		
βC(1)	2.64 - 105.2	3.40	2.65	-106.1	3.35		
γC(1)	3·19 <i>−</i> 79·2	2.86	3.21	-80.2	2.82		
δC(1)	2.45 - 67.3	1.66	2.44	67•4	1.65		

References

- ARNOTT, S., DOVER, S. D. & ELLIOTT, A. (1967). J. Mol. Biol. 30, 201.
- ARNOTT, S. & WONACOTT, A. J. (1966a). Polymer J. 6, 478.
- ARNOTT, S. & WONACOTT, A. J. (1966b). J. Mol. Biol. 21, 371.
- BURGE, R. E., HARRISON, P. M. & MCGAVIN, S. (1962). Acta Cryst. 15, 914.
- COWAN, P. M. & MCGAVIN, S. (1955). Nature, Lond. 176, 501
- ELLIOTT, A. & MALCOLM, B. R. (1959). Proc. Roy. Soc. A 249, 30.
- LEUNG, Y. C. & MARSH, R. E. (1958). Acta Cryst. 11, 17. SASISEKHARAN, V. (1959). Acta Cryst. 12, 897.

Acta Cryst. (1968). B24, 601

The crystal structure of Zr₂Se* By H.F. FRANZEN and L.J. NORRBY[†], Institute for Atomic Research and Department of Chemistry Iowa State University, Ames, Iowa, U.S.A.

(Received 6 December 1967)

The crystal structure of Zr₂Se has been determined and refined by X-ray single-crystal methods. Zr₂Se was found to be isostructural with Ta₂P [Nylund, Acta Chem. Scand. (1966), 20, 2393] and with Ti₂S [Owens, Conard & Franzen, Acta Cryst. (1967), 23, 77].

The coordination polyhedra types between trigonal prismatic and tetrakaidecahedral found for boron, silicon and phosphorus in many compounds of these elements with transition elements (Aronsson, Lundström & Rundqvist, 1965) were recently found also for sulphur in Ti₂S (Owens, Conard & Franzen, 1967) and in Nb₂₁S₈ (Franzen, Beineke & Conard, 1968). The work reported here was carried out with the purpose of further exploring the crystal chemistry of the lower chalcogenides of transition elements, and in particular to determine whether other cases of augmented trigonal prismatic coordination could be found for chalcogens.

The method of high temperature preparation has been described previously (Owens, Conard & Franzen, 1967). In the case of Zr_2Se the sample was prepared at a final annealing temperature of 1550°C. The single-crystal X-ray diffraction data were collected with a Hilger-Watts full circle diffractometer coupled to an SDS-910 computer in a configuration described elsewhere (Dahm, Benson, Nimrod, Fitzwater & Jacobsen, 1967). Mo Ka radiation was used with balanced Zr and Y filters to collect data for about 1300 reflections at $2\theta \le 80^\circ$.

The Lorentz, polarization and absorption corrections were applied as described previously (Franzen, Beineke & Conard, 1968). The standard deviations of all observations were obtained with the use of the law of propagation of errors and estimated standard deviations in the θ angle and the absorption factor and standard deviations in the intensities (corrected for background) based on counter statistics. Data were accepted only if $\sigma(I)/I < 0.4$, leaving 438 independent reflections.

The lattice parameters were determined from a Guinier powder photograph at 25°C using KCl as internal standard and Cu $K\alpha_1$ radiation, $\lambda = 1.54050$ Å:

$$a = 12.6400 \pm 27$$
 Å, $b = 15.7968 \pm 32$ Å, $c = 3.6016 \pm 10$ Å,
 $V = 719.1 \pm 3$ Å³.
With Z = 12, (cf. below), $D_x = 7.24$ g.cm⁻³.

By comparison of the Weissenberg pattern of Zr₂Se with that of Ti₂S it seemed likely that these two compounds are isostructural. Accordingly the Ti₂S positions were used as

^{*} Work was performed in the Ames Laboratory of the U.S. Atomic Energy Commission. Contribution No. 2227.

[†] Present address: Institute of Inorganic and Physical Chemistry, University of Stockholm, Stockholm 50, Sweden.

a starting model for the structure of Zr₂Se, and this model was refined by full-matrix least-squares calculation with the computer program ORFLS (Busing, Martin & Levy, 1962). The atomic scattering factors used were those given by Hanson, Herman, Lea & Skillman (1964). The real part of the anomalous dispersion correction as given in International Tables for X-ray Crystallography (1962) was applied to the scattering factor for zirconium. In Ti₂S there are twelve formula units in nine fourfold positions in the mirror planes of the space group Pnnm (No. 58). In addition to the eighteen corresponding positional parameters, nine independent isotropic temperature factor coefficients and one scale factor were refined. The overdetermination of the structure was thus greater than fifteen-fold.

The weights, w, were taken to be reciprocals of the squares of the standard deviations, obtained as discussed above. The quantity minimized in the least-squares procedure was $\Sigma w(|F_{obs}| - |F_{calc}|)^2$. An unweighted \hat{R} value of 0.106 was obtained after several cycles, and further cycles of calculation did not result in further refinement of the structure; all parameter shifts were < 1% of the e.s.d.'s of the parameters. The value obtained for the quantity commonly

Table 2. Interatomic distances in $Zr_2Se(\pm 0.01 \text{ Å})$

Coordinated

atom

Zr(2)

Zr(5)

Zr(6)

Number

of coordinated

atoms

2 221 Distance

2.75 Å

2.75

2.79

Table	1.	Least-squares	refined	parameters	of	the	crystal	
structure of Zr ₂ Se								

All

structure of Zr_2Se atoms are in the point position $4(g) x, y, 0$ of the space group				Zr(3)	1	2.88
				Zr(4)	1	2.95
Pnnm.				$\mathbf{Zr}(5)$	2	2.72
104X/a	$10^{4}Y/b$	В	50(2)	Zr(3)	2	2.73
1522 ± 5	242 ± 4	0.52 ± 12 Å ²		Zr(1)	$\overline{2}$	2.77
775 ± 5	2534 ± 5	0.64 ± 11		Zr(4)	1	2.86
5829 <u>+</u> 5	801 ± 4	0.20 ± 10		Zr(6)	1	2.94
4681 ± 5	3912 ± 4	0.35 ± 11	$\mathbf{C}_{-}(2)$	$7_{\mathbf{r}}(5)$	1	0 70
7988 ± 3	2028 ± 4	0.18 ± 12 0.22 + 11	Se(3)	Zr(5)	1	2.73
0/0/±3 4206±5	4221 ± 4	0.23 ± 11		Zr(0) Zr(1)	1	2.74
4200 ± 3 2447 ± 5	2083 ± 4 4191 ± 4	0.22 ± 11 0.38 ± 12		$Z_{r}(2)$	2	2.74
6806 + 5	3476 ± 4	0.30 ± 12 0.13 ± 11		Zr(4)	1	2.78
	struct in the point po	$\begin{array}{r} structure \ of \ Zr_2Se \\ e \ in \ the \ point \ position \ 4(g) \ x, y, \\ Pnnm. \\ 10^4X/a \ 10^4Y/b \\ 1522 \pm 5 \ 242 \pm 4 \\ 775 \pm 5 \ 2534 \pm 5 \\ 5829 \pm 5 \ 801 \pm 4 \\ 4681 \pm 5 \ 3912 \pm 4 \\ 7988 \pm 5 \ 2028 \pm 4 \\ 8767 \pm 5 \ 4221 \pm 4 \\ 4206 \pm 5 \ 2083 \pm 4 \\ 2447 \pm 5 \ 4191 \pm 4 \\ 6806 + 5 \ 3476 + 4 \end{array}$	$\begin{array}{c c} structure \ of \ Zr_2Se \\ \hline point position \ 4(g) \ x, y, 0 \ of \ the space \ group \\ Pnnm. \\ \hline 10^4 X/a & 10^4 Y/b & B \\ 1522 \pm 5 & 242 \pm 4 & 0.52 \pm 12 \ Å^2 \\ 775 \pm 5 & 2534 \pm 5 & 0.64 \pm 11 \\ 5829 \pm 5 & 801 \pm 4 & 0.20 \pm 10 \\ 4681 \pm 5 & 3912 \pm 4 & 0.35 \pm 11 \\ 7988 \pm 5 & 2028 \pm 4 & 0.18 \pm 12 \\ 8767 \pm 5 & 4221 \pm 4 & 0.23 \pm 11 \\ 4206 \pm 5 & 2083 \pm 4 & 0.22 \pm 11 \\ 2447 \pm 5 & 4191 \pm 4 & 0.38 \pm 12 \\ 6806 + 5 & 3476 + 4 & 0.13 \pm 11 \\ \hline \end{array}$	$\begin{array}{c c} structure \ of \ Zr_2Se\\ \hline {e in the point position 4(g) x, y, 0 of the space group}\\ Pnnm.\\ \hline 104X/a & 104Y/b & B & Se(2)\\ \hline 1522 \pm 5 & 242 \pm 4 & 0.52 \pm 12 \ Å^2\\ \hline 775 \pm 5 & 2534 \pm 5 & 0.64 \pm 11\\ \hline 5829 \pm 5 & 801 \pm 4 & 0.20 \pm 10\\ \hline 4681 \pm 5 & 3912 \pm 4 & 0.35 \pm 11\\ \hline 7988 \pm 5 & 2028 \pm 4 & 0.18 \pm 12 & Se(3)\\ \hline 8767 \pm 5 & 4221 \pm 4 & 0.23 \pm 11\\ \hline 4206 \pm 5 & 2083 \pm 4 & 0.22 \pm 11\\ \hline 2447 \pm 5 & 4191 \pm 4 & 0.38 \pm 12\\ \hline 6806 + 5 & 3476 + 4 & 0.13 \pm 11\\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Reference

atom

Se(1)

Table 3. Observed and calculated structure factors for Zr Se

H F(0) F(C)	11 204 -200	1 65 55	K=14.L= 0	10 93 -57	K= 4,i= 1	K= 9,L= 1	16 99 -117	5 96 71	1 246 254
	12 96 81	2 355 -327	0 166 144		1 261 269	0 122 102	•		3 111 -101
K= 0.L= 0	13 200 219	3 82 58	1 117 -85	K=24,L= 0	2 408 -463	1 130 -120	K=15,L= 1	K= 0,L= 2	4 92 92
2 27 -22	14 212 224	4 114 114	2 159 -139	0 119 124	3 79 -71	2 165 -157	0 140 128	4 97 -110	5 181 ~182
4 1 51 -147	20 83 57	5 85 67	5 208 207	5 130 -116	5 88 103	3 243 -241	3 179 169	6 132 -136	7 62 -24
6 165 -170	21 114 -111	7 71 69	6 107 -98	6 157 -190	6 49 -33	4 106 -94	6 79 -52	8 94 -116	8 226 -264
9 125 -127		8 66 -63	7 170 -166	• • •	7 61 -64	5 129 126	7 111 80	12 116 123	10 125 -136
10 110 140	K	10 74 47	11 113 -127	K-25 I - 0	8 63 66	0 04 97	a 140 -141		10 125 -120
12 115 142	K= 3+L- 0	10 14 41	11 113 -121	1 112 -04	0 166 -161	11 74 . 50	9 100 -101	K- 1 4- 7	11 // 69
18 198 -231	2 69 -51	11 126 -126	13 51 71	1 112 -90	4 146 -141	11 76 -59	9 139 -128	N= 1+L= 2	
	3 350 - 345	13 112 -84	16 116 124	5 116 125	10 89 94	13 122 143	11 100 117	5 26 - 38	K= 8,L= 2
K= 1,L= 0	4 212 -206	14 111 95			11 82 67	15 159 -140	18 93 -85	5 2 6 243	0 91 -84
2 26 4	9 86 92	16 118 -83	K=15,L= 0	K=27,L= 0	12 94 -64	16 97 89		6 71 46	1 235 -230
3 54 -52	12 116 132	17 87 -69	1 141 -126	3 103 72	16 119 -142		K=16,L≕ 1	7 50 109	2 1 23 1 23
5 268 310	14 174 -154		4 102 97	4 94 -30	17 85 -101	K=10,L≃ 1	1 98 93	9 111 -143	3 53 99
6 57 58	15 90 93	K=10,L= 0	5 1 2 1 9 0		22 99 99	1 184 -156	6 228 226	10 133 151	6 78 101
7 131 134	16 91 -92	0 168 155	6 97 -86	K= 0,L= 1		2 101 104	7 145 -128		7 130 -150
9 159 -169	18 98 75	1,120-110	8 147 -123	1 54 -71	K≂ 5.L= 1	4 156 153		K= 2.L= 2	8 80 -57
10 172 177		4 102 91		3 235 -282	0 443 465	5 253 237	K = 17.1 = 1	3 73 -59	0 00 0
12 70 49	K- 6.1- 0	5 87 -73	K=16.1= 0	7 113 120	1 188 -182	8 196 -198	0 145 -142	5 239 280	K- 0.1- 2
12 10 49	0 351 -337	6 03 -69	0 126 -116	0 117 126	2 106 -02	0 48 30	2 110 -106	6 100 88	7 795 740
1/ 83 -/4	0 351 - 527	8 82 -88	0 128 -118	7 117 139	2 104 -73	7 00 37	2 110 -104	0 100 00	2 285 -289
	1 58 22	7 103 84	2 89 76	11 103 -164	5 75 78	15 151 -147	3 118 110	0 1 80 244	4 88 98
K= 2.L= 0	2 195 -176	11 224 238	3 227 -200		4 63 53	16 98 83	8 94 115	10 152 -171	1 16 54
0 27 -28	3 276 - 254	15 110 -116	5 115 90	K= 1+L= 1	1 10 -13	18 93 70	11 146 134		11 102 -114
2 63 -61	6 343 381	19 98 86	6 88 -81	0 79 -80	8 70 67		14 113 -133	K= 3+L= 2	
3 82 -77	8 117 -128		7 95 -75	1 75 72	9 74 66	K≠11,L= 1	16 118 118	4 1 03 119	K=1C.L= 2
4 62 -53	9 154 -155	K=11,L= 0	9 106 -106	2 53 53	11 174 179	1 115 -93		5 175 -193	0 143 131
5 294 357	11 87 89	1 63 -50		3 185 -209	12 80 -87	3 261 -248	K=18,L= 1	6 63 -67	1 86 -92
5 1 69 1 14	18 114 115	2 2 03 194	K=17,L= 0	4 159 -173	13 77 -83	5 136 116	1 125 -128	8 1 11 130	4 87 76
3 269 291	22 93 41	3 127 104	3 179 156	5 225 -264		7 105 ~87	2 189 -176	10 137 166	7 93 74
9 79 61		4 174 138	4 178 -166	7 98 101	K= 6,L= 1	8 154 -154	3 87 65	13 163 190	9 85 39
10 199 -199	$K = 7 \cdot I = 0$	6 331 314	5 172 -158	8 149 -155	2 59 40	10 96 92	4 88 74		
14 91 -77	1 352 318	8 184 -168	14 112 -147	9 79 -82	3 118 121	11 86 -82	10 85 79	K= 4-1= 2	K = 11.1 = 2
	3 135 -124	10 155 -182	16 110 -64	10 62 52	4 1 37 147	•• •• ••	11 98 94	3 70 56	2 174 158
x= 2 1 = 0	4 125 115	12 107 108		11 186 182	6 205 202	K=12.1= 1		4 1 25 -121	4 1 15 1 15
	F 222 -221	10 97 66	K-18 I - 0	15 09 -117	B 107 -117	1 1 21 00	K-10 I - 1	5 220 247	5 40 3P
2 45 -50	9 222 -221	19 62 40	0 344 -351	14 120 -122	« 10/ -11/	2 04 -00		7 40 -47	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 165 154	8 283 -286	×-12.1	0 204 -251	16 120 -135	w	2 94 - 99	0 149 -144	7 80 -43	6 267 273
5 228 -240	10 149 -145	K=12+L= 0	2 94 99		$K = T \cdot L = L$	3 93 89	7 97 -103	8 13 -10	H 130 -146
6 85 -79	11 102 77	0 148 146	4 114 115	K= 2,L= 1	0 128 -126	5 175 -170	16 114 112	9 83 -74	
7 80 75	13 139 125	6 150 -149	6 97 122	3 128 -138	1 67 66	6 // -64		11 153 -177	K=12,L= 2
8 144 151	16 98 93	7 132 122	9 95 -113	4 232 -257	2 59 -67	8 146 -160	K=20+L= 1		0 1 32 1 24
10 178 188	19 141 -166	8 118 107	-12 93 -98	5 44 -41	3 54 -31	20 92 41	2 81 68	K= 5,L= 2	4 73 -57
12 74 51		11 165 165	13 109 100	6 118 129	5 204 211		3 85 75	3 263 -268	6 136 -128
13 175 207	K= 3.L= 0	12 105 116	14 116 -78	7 207 219	7 100 97	K=13,L= 1	7 135 -149	4 152 -163	7 100 108
14 83 -101	0 124 -58	14 81 -58		8 102 -96	8 340 353	0 215 -200	8 86 -88	9 73 80	8 1 1 9 96
16 73 -61	1 306 -283	15 114 -104	K=19,L= 0	10 146 -154	10 219 -217	1 153 -130		12 102 118	
17 72 -45	2 165 153		1 103 123	11 87 -78	11 93 70	2 243 240	K=21.L= 1		K=13.L= 2
19 116 -134	3 99 116	K=13.L= 0	4 96 72			4 77 46	0 86 -79	K= 6.L= 2	1 168 -163
	6 131 116	1 200 -199		K= 3,L= 1	K= 8,L= 1	7 96 -90	3 230 -260	0 267 -251	2 180 -179
K= 4.1= 0	7 167 -174	2 237 -208	$K = 20 \cdot i = 0$	0 95 96	1 66 51	16 164 -157	8 100 51	2 156 -136	8 50 109
0 30 - 27	8 86 -AR	5 108 80	7 90 45	3 385 453	5 222 -213		15 131 -109	3 203 -204	5 /0 10/
1 55 34	10 67 -79	8 119 119	8 155 -199	4 50 -53	7 117 -114	K=14.1= 1		6 286 314	$K = 14 \cdot 1 = -2$
1 1 1	11 74 52	0 04 -05		6 196 206	8 80 44	2 147 -134	x-22 I - 1	7 47 21	N-1-1-120
5 11 12	12 100 -115	10 125 147	x-72.1 - 0	7 164 -1 74	0 104 -00	5 149 130	7 176 117	9 112 -112	0 145 130
4 153 -158	15 106 -115	10 100 147	N-22 +L= U	0 270 -202	7 104 -98	7 140 130	2 124 117	9 112 -113	2 95 -121
5 286 309	10 34 -86	11 01 90	0 224 -238	7 219 - 293	12 120 130	7 110 129	3 30 85	III - I33	2 TAA 183
6 65 -73	14 100 111	15 41 81		10 106 -122	12 141 151	9 142 128		11 82 79	6 86 -88
8 84 -85		10 114 -134	K=23+L= 0	14 83 -92	13 240 236	11 170 -185	K=23,L= 1		
9 96 -86	K= 9+L= 0		1 107 -120			13 188 -199	2 1 01 97	K= 7,L= 2	

referred to as the standard deviation of an observation of unit weight, $[\Sigma w \Delta^2/m - n]^{\pm}$ (*m* is the number of observations, *n* is the number of variables), was 1.25. The parameters obtained are presented in Table 1. The Se-Zr interatomic distances implied by these parameters are presented in Table 2. The data of Table 1 demonstrate that Zr_2Se is isostructural with Ta₂P (Nylund, 1966) and with Ti₂S. The setting used by Nylund differs from that used here by an interchange of the *a* and *b* axes. The fact that Ta_2P , Ti_2S and Zr₂Se are isostructural is not an unexpected result considering their similar radius ratios and valence electron configurations. It has further been shown by the data of Table 2 that selenium, as well as sulphur, exhibits coordination as high as seven and eight fold with augmented trigonal prismatic arrangement of the metal atoms. A list of F_{obs} and F_{calc} is given in Table 3.

A view of the bonding of chalcogens in trigonal prismatic (Franzen, 1966), and augmented trigonal prismatic (Owens, Conard & Franzen, 1967; Franzen, Beineke & Conard, 1968) environments has been presented which attributes the occurrence of these coordination configurations to the involvement of the chalcogen d orbitals in the chemical bonding. It would seem that this view of the bonding is unavoidable in the case of Zr₂Se, since the 4*d* levels of both Zr and Se are of nearly the same energy, and thus they surely will mix in the formation of a valence band in Zr₂Se. The metal coordination in compounds of this structure

type has recently been discussed (Franzen, Smeggil & Conard, 1967).

The authors wish to express their gratitude to Mr J. Smeggil for his assistance in the preparation of single crystals and powder samples of Zr_2Se and the preliminary X-ray work.

References

- ARONSSON, B., LUNDSTRÖM, T. & RUNDQVIST, S. (1965). Borides, Silicides & Phosphides, New York: John Wiley.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). Oak Ridge National Laboratory Report ORNL-TM-305.
- DAHM, D. J., BENSON, J. E., NIMROD, D. M., FITZWATER, D. R. & JACOBSEN, R. A. (1967). USAEC Rept. IS-1701.
- FRANZEN, H. F. (1966). J. Inorg. Nucl. Chem. 28, 1575.
- FRANZEN, H. F., BEINEKE, T. A. & CONARD, B. R. (1968). Acta Cryst. B24, 412.
- FRANZEN, H. F., SMEGGIL, J. & CONARD, B. R. (1967). Mat. Res. Bul. In the press.
- NYLUND, A. (1966). Acta Chem. Scand. 20, 9.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 216. Birmingham: Kynoch Press.
- Owens, J. P., CONARD, B. R. & FRANZEN, H. F. (1967). Acta Cryst. 23, 77.

Acta Cryst. (1968). B24, 603

The cell constants and space group of the complex $(C_6H_5)_3$ Sn.Mn(CO)₅ By KH.A.I.F.M.MANNAN, *Physics Department*, Dacca University, Dacca-2, East Pakistan.

(Received 6 November 1967)

The cell constants for the complex $(C_6H_5)_3$ Sn. Mn(CO)₅ are $a=15.91\pm0.01$, $b=16.32\pm0.01$, $c=32.12\pm0.02$ Å; $\beta=95.0\pm0.1^\circ$. There are two molecules in each asymmetric unit. The crystal belongs to the space group C2/c.

The complex $(C_6H_5)_3Sn \cdot Mn(CO)_5$ would be expected to have a direct metal to metal bonding as the crystals are diamagnetic. As a part of a study of metal to metal bonds between such dissimilar metal atoms, the crystal structure determination of this complex by X-ray diffraction methods was undertaken.

The crystals are monoclinic. The cell constants determined from zero-layer Weissenberg photographs about aand b axes with Cu $K\alpha$ radiation are:

$$a = 15.91 \pm 0.01, b = 16.32 \pm 0.01, c = 32.12 \pm 0.02 \text{ Å};$$

 $\beta = 95.0 \pm 0.1^{\circ}.$

The density observed by the method of flotation was 1.74 g.cm^{-3} , and the calculated density for 16 molecules in the unit cell was 1.74 g.cm^{-3} .

The systematic absences observed from Weissenberg photographs for the 0 to 4th layers about the a axis, the 0 to 9th layers about the b axis, and the 0 and 1st layers about the c axis may be summarized as below:

Reflexions hkl are present for h+k=2n. Reflexions h0l are present for l=2n, and h=2n. Reflexions 0k0 are present for k=2n. Thus, from all these conditions of systematic absences, the space group is either no.9, *Cc* or no.15, *C2/c* (*International Tables for X-ray Crystallography*, 1952).

A three-dimensional Patterson synthesis revealed linear concentrations at $0, y, \frac{1}{2}$ and planar concentrations at x, 0, z. This shows that the space group is C2/c (Buerger, 1959). This creates the problem of placing two molecules in each asymmetric unit.

My thanks are due to Prof. H.M.Powell, F.R.S. and Prof. R.S. Nyholm, F.R.S. for kindly supplying the crystals. I acknowledge my gratitude to all those who helped me in various ways for the progress of this work.

References

BUERGER, M. J. (1959). Vector Space, p.202. New York: John Wiley.

International Tables for X-ray Crystallography (1952). Vol. 1. Birmingham: Kynoch Press.